题目内容

1.如图,直线l是四边形ABCD的对称轴,若AD∥BC,则下列结论:(1)AB∥CD;(2)AB=AD;(3)BO=CO,(4)BD平分∠ABC.其中正确的有(1)(2)(4)(填序号).

分析 根据轴对称的性质可得∠1=∠2,∠3=∠4,根据两直线平行,内错角相等可得∠2=∠3,从而得到∠1=∠3=∠4,然后根据内错角相等,两直线平行可得AB∥CD,等角对等边可得AB=BC,再根据等腰三角形三线合一的性质可得BD平分∠ABC,AO=CO.

解答 解:如图,∵直线l是四边形ABCD的对称轴,

∴∠1=∠2,∠3=∠4,
∵AD∥BC,
∴∠2=∠3,
∴∠1=∠3=∠4,
∴AB∥CD,AB=BC,故(1)(2)正确;
由轴对称的性质,AC⊥BD,
∴BD平分∠ABC,AO=CO(等腰三角形三线合一),故(4)正确.
但不能得出BO=CO,故(3)错误;
综上所述,正确的是(1)(2)(3)(4).
故答案为:(1)(2)(4).

点评 本题考查了轴对称的性质,平行线的性质以及等腰三角形三线合一的性质,熟记各性质是解题的关键,用阿拉伯数字加弧线表示角更形象直观.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网