题目内容

1.阅读下面的材料,并解答后面的问题:
$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$
(1)观察上面的等式,请直接写出$\frac{1}{\sqrt{n+1}+\sqrt{n}}$(n为正整数)的结果$\sqrt{n+1}$-$\sqrt{n}$;
(2)计算($\sqrt{n+1}+\sqrt{n}$)($\sqrt{n+1}-\sqrt{n}$)=1;
(3)请利用上面的规律及解法计算:($\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{2017}+\sqrt{2016}}$)($\sqrt{2017}+1$).

分析 (1)利用分母有理化的方法解答;
(2)根据平方差公式计算即可;
(3)利用阅读材料的结论和二次根式的加减混合运算法则计算.

解答 解:(1)$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}$=$\sqrt{n+1}$-$\sqrt{n}$,
故答案为:$\sqrt{n+1}$-$\sqrt{n}$;
(2)($\sqrt{n+1}+\sqrt{n}$)($\sqrt{n+1}-\sqrt{n}$)=($\sqrt{n+1}$)2-($\sqrt{n}$)2=1,
故答案为:1;
(3)($\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{2017}+\sqrt{2016}}$)($\sqrt{2017}+1$)
=($\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+…+$\sqrt{2017}$-$\sqrt{2016}$)($\sqrt{2017}+1$)
=($\sqrt{2017}$-1)($\sqrt{2017}$+1)
=2017-1
=2016.

点评 本题考查的是分母有理化的应用,掌握平方差公式、二次根式的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网