题目内容

7.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=(  )
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

分析 借助翻折变换的性质得到DE=CE;设AB=3k,CE=x,则AE=3k-x;根据相似三角形的判定与性质即可解决问题.

解答 解:设AD=k,则DB=2k,
∵△ABC为等边三角形,
∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,
∴∠EDA+∠FDB=120°,
又∵∠EDA+∠AED=120°,
∴∠FDB=∠AED,
∴△AED∽△BDF,
∴$\frac{ED}{FD}=\frac{AD}{BF}=\frac{AE}{BD}$,
设CE=x,则ED=x,AE=3k-x,
设CF=y,则DF=y,FB=3k-y,
∴$\frac{x}{y}=\frac{k}{3k-y}=\frac{3k-x}{2k}$,
∴$\left\{\begin{array}{l}{ky=x(3k-y)}\\{2kx=y(3k-x)}\end{array}\right.$,
∴$\frac{x}{y}$=$\frac{4}{5}$,
∴CE:CF=4:5.
故选:B.

解法二:解:设AD=k,则DB=2k,
∵△ABC为等边三角形,
∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,
∴∠EDA+∠FDB=120°,
又∵∠EDA+∠AED=120°,
∴∠FDB=∠AED,
∴△AED∽△BDF,由折叠,得
CE=DE,CF=DF
∴△AED的周长为4k,△BDF的周长为5k,
∴△AED与△BDF的相似比为4:5
∴CE:CF=DE:DF=4:5.
故选:B.

点评 主要考查了翻折变换的性质及其应用问题;解题的关键是借助相似三角形的判定与性质(用含有k的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网