题目内容

7.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的关系是(  )
A.S1>S2B.S1=S2C.S1<S2D.S1=2S2

分析 根据矩形的性质,可知△ABD的面积等于△CDB的面积,△MBK的面积等于△QKB的面积,△PKD的面积等于△NDK的面积,再根据等量关系即可求解.

解答 解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,
∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,
∴△ABD的面积-△MBK的面积-△PKD的面积=△CDB的面积-△QKB的面积=△NDK的面积,
∴S1=S2
故选:B.

点评 本题的关键是得到△ABD的面积等于△CDB的面积,△MBK的面积等于△QKB的面积,△PKD的面积等于△NDK的面积,依此即可求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网