题目内容

19.如图,四边形ABCD是⊙O的内接四边形,AB是⊙O的直径,∠D=108°,连接AC.
(1)求∠BAC的度数;
(2)若∠DCA=27°,AB=8,求图中阴影部分的面积(结果保留π).

分析 (1)根据圆内接四边形的性质得到∠B=72°,根据AB是⊙O的直径,得到∠ACB=90°,根据三角形的内角和即可得到结论;
(2)连接OC,OD,根据三角形的内角和得到∠DAC=180°-108°-27°=45°,由圆周角定理得到∠DOC=90°,推出△COD是等腰直角三角形,根据扇形和三角形的面积公式即可得到结论.

解答 解:(1)∵四边形ABCD是⊙O的内接四边形,∠D=108°,
∴∠B=72°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BAC=18°;

(2)连接OC,OD,
∵∠D=108°,∠DCA=27°,
∴∠DAC=180°-108°-27°=45°,
∴∠DOC=90°,
∴△COD是等腰直角三角形,
∵AB=8,
∴OC=OD=4,
∴阴影部分的面积=S扇形COD-S△COD=$\frac{90π×{4}^{2}}{360}$-$\frac{1}{2}$×42=4π-8.

点评 本题考查了圆内接四边形的性质,圆周角定理,等腰直角三角形的判定和性质,扇形的面积的计算,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网