题目内容
2.计算:(2$\sqrt{\frac{3}{2}}$-$\sqrt{\frac{1}{2}}$)×($\frac{1}{2}$$\sqrt{8}$+$\sqrt{\frac{2}{3}}$)-($\sqrt{3}$-2)2.分析 先把二次根式化为最简二次根式,然后利用乘法公式展开,再合并即可.
解答 解:原式=($\sqrt{6}$-$\frac{\sqrt{2}}{2}$)($\sqrt{2}$+$\frac{\sqrt{6}}{3}$)-(3-4$\sqrt{3}$+4)
=2$\sqrt{3}$+2-1-$\frac{\sqrt{3}}{3}$-7+4$\sqrt{3}$
=$\frac{17\sqrt{3}}{3}$-6.
点评 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
练习册系列答案
相关题目
11.阅读下面材料,并解答其后的问题:
定义:两组领边分别相等的四边形叫做筝形.
如图1,四边形ABCD中,若AD=AB,CD=CB,则四边形ABCD是筝形.
类比研究:
我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对平行四边形的性质进行研究,请根据示例图形,完成下表:
(1)表格中①、②分别填写的内容是:
①轴对称图形;
②一条对角线垂直平分另一条对角线.
(2)演绎论证:证明筝形有关对角线的性质.
已知:在筝形ABCD中,AD=AB,BC=DC,AC、BD是对角线.
求证:AC垂直平分BD.
证明:
(3)运用:如图3,已知筝形ABCD中,AD=AB=4,CD=CB,∠A=90°,∠C=60°,求筝形ABCD的面积
定义:两组领边分别相等的四边形叫做筝形.
如图1,四边形ABCD中,若AD=AB,CD=CB,则四边形ABCD是筝形.
类比研究:
我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对平行四边形的性质进行研究,请根据示例图形,完成下表:
| 四边形 | 示例图形 | 对称性 | 边 | 角 | 对角线 |
| 平行 四边形 | 两组对边分别平行,两组对边分别相等 | 两组对边分别平行,两组对边分别相等. | 两组对角 分别相等. | 对角线互相平分. | |
| 等腰 梯形 | ①轴对称图形 | 两组邻边分别相等 | 有一组对角相等 | ②一条对角线垂直平分另一条对角线 |
①轴对称图形;
②一条对角线垂直平分另一条对角线.
(2)演绎论证:证明筝形有关对角线的性质.
已知:在筝形ABCD中,AD=AB,BC=DC,AC、BD是对角线.
求证:AC垂直平分BD.
证明:
(3)运用:如图3,已知筝形ABCD中,AD=AB=4,CD=CB,∠A=90°,∠C=60°,求筝形ABCD的面积