题目内容

4.一只袋中装有三只完全相同的小球,三只小球上分别标有1,-2,3,第一次从袋中摸出一只小球,把这只小球的标号数字记作一次函数y=kx+b中的k,然后放回袋中搅匀后,再摸出一只小球,把这只小球的标号数字记作一次函数y=kx+b中的b.则一次函数y=kx+b的图象经过一,二,三象限的概率$\frac{4}{9}$.

分析 画树状图展示所有9种等可能的结果数,再出k>0,b>0的结果数,然后根据一次函数的性质和概率公式求解.

解答 解:画树状图为:

共有9种等可能的结果数,其中k>0,b>0的结果数为4,
所以一次函数y=kx+b的图象经过一,二,三象限的概率=$\frac{4}{9}$.
故答案为$\frac{4}{9}$.

点评 本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网