题目内容

4.对于二次函数y=-x2+2x.有下列四个结论:①它的对称轴是直线x=1;②y随x的增大而增大;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为(  )
A.1B.2C.3D.4

分析 利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.

解答 解:y=-x2+2x=-(x-1)2+1,故①它的对称轴是直线x=1,正确;
②∵a=-1<0,∴开口向下,当x<1时y随着x的增大而增大,错误;
③当y=0,则x(-x+2)=0,解得:x1=0,x2=2,
故它的图象与x轴的两个交点是(0,0)和(2,0),正确;
④∵a=-1<0,
∴抛物线开口向下,
∵它的图象与x轴的两个交点是(0,0)和(2,0),
∴当0<x<2时,y>0,正确.
故选C.

点评 本题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网