题目内容

17.已知整式p=x2+x-1,Q=x2-x+1.R=-x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a、b、c为常数).则可以进行如下分类:
①若a≠0,b=c=0,则称该整式为P类整式;
②若a≠0,b≠0,c=0,则称该整式为PQ类整式;
③若a≠0,b≠0,c≠0.则称该整式为PQR类整式.

(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义.
若a=b=0,c≠0,则称该整式为“R类整式”.
若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
(2)例如x2-5x+5则称该整式为“PQ类整式”,因为-2P+3Q=-2(x2+x-1)+3(x2-x-1)
=-2x2-2x+2+3x2-3x+3=x2-5x+5.
即x2-5x+5=-2P+3Q,所以x2-5x+5是“PQ类整式”
  问题:x2+x+1是哪一类整式?请通过列式计算说明.
(3)试说明4x2+11x+2015是“PQR类整式”,并求出相应的a,b,c的值.

分析 (1)类比的出R类整式和QR类整式的定义即可;
(2)类比方法拆开表示得出答案即可;
(3)利用给出的PQR类整式得意义待定得出a、b、c的数值即可.

解答 解:(1)若a=b=0,c≠0,则称该整式为“R类整式”.
若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
(2)∵x2+x+1=(x2+x-1)+(x2-x+1)+(-x2+x+1),
∴该整式为PQR类整式.
(3)∵4x2+11x+2015是“PQR类整式”,
∴设4x2+11x+2015=a(x2+x-1)+b(x2-x+1)+c(-x2+x+1),
∴a+b-c=4,a-b+c=11,-a+b+c=2015,
解得:a=7.5,b=1009.5,c=1013.

点评 此题考查整式,理解题意,掌握给出的整式的特征,利用类比的方法得出答案即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网