题目内容

12.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于$\frac{\sqrt{3}}{2}$.

分析 连接AB,先根据题意判断出△AOB的形状,再得出∠AOB的度数,由特殊角的三角函数值即可得出结论.

解答 解:∵以O为圆心,任意长为半径画弧,与射线OM交于点A,
∴OA=OB,
∵以A为圆心,AO长为半径画弧,两弧交于点B,
∴△AOB是等边三角形,
∴∠AOB=60°,
∴sin∠AOB=sin60°=$\frac{\sqrt{3}}{2}$;
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查的是特殊角的三角函数值及等边三角形的判定与性质,熟记各特殊角的三角函数值是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网