题目内容
2.分析 过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.
解答 解:过E作EP⊥BC于点P,EQ⊥CD于点Q,![]()
∵四边形ABCD是正方形,
∴∠BCD=90°,
又∵∠EPM=∠EQN=90°,
∴∠PEQ=90°,
∴∠PEM+∠MEQ=90°,
∵三角形FEG是直角三角形,
∴∠NEF=∠NEQ+∠MEQ=90°,
∴∠PEM=∠NEQ,
∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,
∴EP=EQ,四边形PCQE是正方形,
在△EPM和△EQN中,
$\left\{\begin{array}{l}{∠PEM=∠NEQ}\\{EP=EQ}\\{∠EPM=∠EQN}\end{array}\right.$,
∴△EPM≌△EQN(ASA)
∴S△EQN=S△EPM,
∴四边形EMCN的面积等于正方形PCQE的面积,
∵正方形ABCD的边长为a,
∴AC=$\sqrt{2}$a,
∵EC=2AE,
∴EC=$\frac{2\sqrt{2}}{3}$a,
∴EP=PC=$\frac{2}{3}$a,
∴正方形PCQE的面积=$\frac{2}{3}$a×$\frac{2}{3}$a=$\frac{4}{9}$a2,
∴四边形EMCN的面积=$\frac{4}{9}$a2,
故答案为:$\frac{4}{9}$a2.
点评 本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.
练习册系列答案
相关题目
7.下列计算中,错误的是( )
| A. | -x2•x3=-x5 | B. | (x-1)2=x2-1 | C. | x6÷(-x3)=-x3 | D. | x2-2x2=-x2 |