题目内容
20.方程(x+y+2)2+|4+x-y|=0,则x=-3,y=1.分析 根据非负数的性质得出关于x、y的方程组,加减消元法解方程组可得答案.
解答 解:∵(x+y+2)2+|4+x-y|=0,
∴$\left\{\begin{array}{l}{x+y=-2}&{①}\\{x-y=-4}&{②}\end{array}\right.$,
①+②,得:2x=-6,
解得:x=-3,
①-②,得:2y=2,
解得:y=1,
故答案为:-3,1.
点评 此题考查了非负数的性质和解二元一次方程组,掌握消元的思想与方法、非负数的性质得出方程组是解题的关键,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
4.
如图,在正方形ABCD内部作等边三角形BCE,则∠AEB的度数为( )
| A. | 60° | B. | 65° | C. | 70° | D. | 75° |
5.
如图,已知a∥b,∠2=70°,则下列正确的是( )
| A. | ∠5=70° | B. | ∠8=70° | C. | ∠7=70° | D. | ∠6=110° |
5.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是( )

| A. | y=-2x2 | B. | y=2x2 | C. | y=-0.5x2 | D. | y=0.5x2 |
9.已知方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=-3}\end{array}\right.$,那么方程组$\left\{\begin{array}{l}{{a}_{1}(x-1)+{b}_{1}(y+2)={c}_{1}}\\{{a}_{2}(x-1)+{b}_{2}(y+2)={c}_{2}}\end{array}\right.$的解为( )
| A. | $\left\{\begin{array}{l}{x=2}\\{y=-3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=-5}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=-5}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$ |