题目内容

8.$\left\{\begin{array}{l}{x-y=40,①}\\{x+\frac{1}{4}y=5.②}\end{array}\right.$
解:原方程化为$\left\{\begin{array}{l}{x-y=40①}\\{4x+y=20②}\end{array}\right.$.

分析 把方程②的未知数的系数化为整数即可.

解答 解:原方程组化为$\left\{\begin{array}{l}{x-y=40①}\\{4x+y=20②}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{x-y=40①}\\{4x+y=20②}\end{array}\right.$.

点评 本题考查了解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网