题目内容

9.已知方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=-3}\end{array}\right.$,那么方程组$\left\{\begin{array}{l}{{a}_{1}(x-1)+{b}_{1}(y+2)={c}_{1}}\\{{a}_{2}(x-1)+{b}_{2}(y+2)={c}_{2}}\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}{x=2}\\{y=-3}\end{array}\right.$B.$\left\{\begin{array}{l}{x=3}\\{y=-5}\end{array}\right.$C.$\left\{\begin{array}{l}{x=1}\\{y=-5}\end{array}\right.$D.$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$

分析 根据对应相等,由方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=-3}\end{array}\right.$,可以得到方程组$\left\{\begin{array}{l}{{a}_{1}(x-1)+{b}_{1}(y+2)={c}_{1}}\\{{a}_{2}(x-1)+{b}_{2}(y+2)={c}_{2}}\end{array}\right.$的解,本题得以解决.

解答 解:∵方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=-3}\end{array}\right.$,
∴在方程组$\left\{\begin{array}{l}{{a}_{1}(x-1)+{b}_{1}(y+2)={c}_{1}}\\{{a}_{2}(x-1)+{b}_{2}(y+2)={c}_{2}}\end{array}\right.$中,$\left\{\begin{array}{l}{x-1=2}\\{y+2=-3}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{x=3}\\{y=-5}\end{array}\right.$,
故选B.

点评 本题考查二元一次方程组的解,解答本题的关键是明确解二元一次方程组的方法,找准对应关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网