题目内容

9.如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD交AF于点H,AB=5,且tan∠EFC=$\frac{{\sqrt{2}}}{4}$,那么AH的长为(  )
A.5B.$5\sqrt{2}$C.10D.$3\sqrt{6}$

分析 根据线段中点的定义可得CE=DE,根据矩形的对边平行可得AD∥BC,再根据两直线平行,内错角相等可得∠DAE=∠CFE,然后利用“角角边”证明△ADE和△CFE全等,根据全等三角形对应边相等可得CF=AD,然后利用tan∠EFC求出BF,再利用勾股定理列式求出AF,再求出△ADH和△FBH相似,根据相似三角形对应边成比例求出$\frac{AH}{FH}$,再求解即可.

解答 解:∵E为CD的中点,
∴CE=DE=$\frac{1}{2}$AB=$\frac{5}{2}$,
在矩形ABCD中,AD∥BC,
∴∠DAE=∠CFE,
在△ADE和△CFE中,
$\left\{\begin{array}{l}{∠DAE=∠CFE}\\{∠AED=∠FEC}\\{CE=DE}\end{array}\right.$,
∴△ADE≌△CFE(AAS),
∴AE=EF,AD=CF,∴BF=BC+CF=AD+CF
∵tan∠EFC=$\frac{\sqrt{2}}{4}$,
∴BF=10$\sqrt{2}$,
在Rt△ABF中,AF=$\sqrt{A{B}^{2}+B{F}^{2}}$=$\sqrt{{5}^{2}+(10\sqrt{2})^{2}}$=15,
∵AD∥BC,
∴△ADH∽△FBH,
∴$\frac{AH}{FH}$=$\frac{AD}{BF}$=$\frac{5\sqrt{2}}{10\sqrt{2}}$=$\frac{1}{2}$,
∴AH=$\frac{1}{1+2}$AF=$\frac{1}{3}$×15=5.
故选A.

点评 本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,解直角三角形,勾股定理,综合题,但难度不大,熟记各性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网