题目内容

13.若$\left\{\begin{array}{l}{x=-3}\\{y=2}\end{array}\right.$是$\left\{\begin{array}{l}{αx+θy=1}\\{θx-βy=-2}\end{array}\right.$的解,则α、β之间的关系是(  )
A.β-9α=1B.9α+4β=1C.3α+2β=1D.4β-9α+1=0

分析 把$\left\{\begin{array}{l}{x=-3}\\{y=2}\end{array}\right.$代入$\left\{\begin{array}{l}{αx+θy=1}\\{θx-βy=-2}\end{array}\right.$得关于θ、α、β的方程组,再利用加减消元法消去未知数θ即可.

解答 解:把$\left\{\begin{array}{l}{x=-3}\\{y=2}\end{array}\right.$代入$\left\{\begin{array}{l}{αx+θy=1}\\{θx-βy=-2}\end{array}\right.$得:$\left\{\begin{array}{l}{-3α+2θ=1①}\\{-3θ-2β=-1②}\end{array}\right.$,
①×3+②×2得:-9α-4β=-1③,
③×(-1)得:9α+4β=1,
故选:B.

点评 此题主要考查了二元一次方程组的解,关键是掌握方程组的解同时满足两个方程.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网