题目内容

1.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.
(1)若∠B=35°,∠ACB=85°,则∠E的度数=25°;
(2)当P点在线段AD上运动时,设∠B=α,∠ACB=β(β>α),则∠E=$\frac{β-α}{2}$(用α,β的代数式表示)

分析 (1)先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;
(2)根据第(1)小题的思路即可推导这些角之间的关系.

解答 解:(1)∵∠B=35°,∠ACB=85°,
∴∠BAC=60°,
∵AD平分∠BAC,
∴∠DAC=30°,
∴∠ADC=65°,
∴∠E=25°.
故答案为:25°;

(2)∠E=$\frac{β-α}{2}$.
∵AD平分∠BAC,
∴∠1=∠2=$\frac{1}{2}$∠BAC,
∵∠B+∠ACB+∠BAC=180°,
∵∠B=α,∠ACB=β,
∴∠CAB=180°-α-β,
∴∠BAD=$\frac{1}{2}$(180°-α-β),
∴∠3=∠B+∠1=α+$\frac{1}{2}$(180°-α-β)=90°+$\frac{1}{2}$α-$\frac{1}{2}$β,
∵PE⊥AD,
∴∠DPE=90°,
∴∠E=90°-(90°+$\frac{1}{2}$α-$\frac{1}{2}$β)=$\frac{1}{2}$(m-n)°=$\frac{1}{2}$(β-α).
故答案为:$\frac{β-α}{2}$.

点评 本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网