题目内容
20.我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
分析 (1)设购买甲种树苗x株,则乙种树苗y株,列出方程组即可解决问题.
(2)根据甲、乙两种树苗的成活的棵数≥800×88%,列出不等式即可解决问题.
(3)设购买两种树苗的费用之和为m,则m=12z+15(800-z)=12000-3z,利用一次函数的性质即可解决问题.
解答 解:(1)设购买甲种树苗x株,则乙种树苗y株,由题意得:
$\left\{\begin{array}{l}{x+y=800}\\{12x+15y=10500}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=500}\\{y=300}\end{array}\right.$,
答:购买甲种树苗500株,乙种树苗300株.
(2)设甲种树苗购买z株,由题意得:
85%z+90%(800-z)≥800×88%,
解得z≤320.
答:甲种树苗至多购买320株.
(3)设购买两种树苗的费用之和为m,则
m=12z+15(800-z)=12000-3z,
在此函数中,m随z的增大而减小
所以当z=320时,m取得最小值,其最小值为12000-3×320=11040元
答:购买甲种树苗320株,乙种树苗480株,即可满足这批树苗的成活率不低于88%,又使购买树苗的费用最低,其最低费用为11040元.
点评 本题考查一次函数的性质、二元一次方程组、一元一次不等式等知识,解题的关键是学会设未知数,构建方程组或不等式或一次函数解决问题,属于中考常考题型.
练习册系列答案
相关题目
15.
小彬所在的“数学兴趣小组”对函数y=(x-1)(x-2)(x-3)的图象与性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
其中,①m=-60;②若M(-7,-720),N(n,720)为该函数图象上的两点,则n=11;
(2)在平面直角坐标系xOy中,描出了以上表中部分点的坐标,根据描出的点,画出函数y=(x-1)(x-2)(x-3)(0≤x≤4)的图象.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
| x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
| y | … | m | -24 | -6 | 0 | 0 | 0 | 6 | 24 | 60 | … |
(2)在平面直角坐标系xOy中,描出了以上表中部分点的坐标,根据描出的点,画出函数y=(x-1)(x-2)(x-3)(0≤x≤4)的图象.