题目内容

9.如图,PA、PB分别与⊙O相切于点A、B,PO的延长线交⊙O于点C,连接BC,OA.
(1)求证:∠POA=2∠PCB;
(2)若OA=3,PA=4,求tan∠PCB的值.

分析 (1)根据切线长定理证明Rt△POA≌Rt△POB,再利用同弧所对的圆心角是圆周角的二倍可得结论;
(2)利用面积法求高线BE的长,利用勾股定理求OE,得CE的长,最后在Rt△OBE中,利用三角函数定义代入可得结果.

解答 证明:(1)连接OB,
∵PA、PB分别与⊙O相切于点A、B,
∴PA=PB,∠OBP=∠OAP=90°,
在Rt△POA和Rt△POB中,
∵$\left\{\begin{array}{l}{PA=PB}\\{PO=PO}\end{array}\right.$,
∴Rt△POA≌Rt△POB(HL),
∴∠POA=∠POB,
∵∠POB=2∠PCB,
∴∠POA=2∠PCB;

(2)过B作BE⊥PC于E,
∵PB=PA=4,OB=OA=3,
∴PO=5,
∴$\frac{1}{2}$PO•BE=$\frac{1}{2}$OB•PB,
∴BE=$\frac{12}{5}$,
由勾股定理得:OE=$\sqrt{{3}^{2}-(\frac{12}{5})^{2}}$=$\frac{9}{5}$,
∴CE=OC+OE=3+$\frac{9}{5}$=$\frac{24}{5}$,
在Rt△OBE中,tan∠PCB=$\frac{BE}{CE}$=$\frac{\frac{12}{5}}{\frac{24}{5}}$=$\frac{1}{2}$.

点评 本题考查了切线长定理、圆周角定理、三角形全等的性质和判定和勾股定理、三角函数,作辅助线构建直角三角形是第二问的关键,本题难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网