题目内容

如图,A、B两点的坐标分别为(2,3)、(4,1).

(1)求△ABO的面积;

(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.

(1)S△ABO=5;(2)A′(2,0),B′(4,-2),O′(0,-3). 【解析】试题分析:(1)利用面积的割补法求解,(2)根据点的平移规律,向下平移,横坐标不变,纵坐标减去平移得单位长度即可求解. 试题解析:(1)如图所示:S△ABO=3×4-×3×2-×4×1-×2×2=5, (2)A′(2,0),B′(4,-2),O′(0,-3).
练习册系列答案
相关题目

如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是________.

50° 【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可. 【解析】 ∵MN是AB的垂直平分线, ∴AD=BD, ∴∠A=∠ABD, ∵∠DBC=15°, ∴∠ABC=∠A+15°, ∵AB=AC...

分解因式:①=____________ ;②=_________________.

; 【解析】①=y2-x2=(y+x)(y-x); ②= (9x2-y2)= (3x+y)(3x-y), 故答案为:①;② .

如图,A、B两点的坐标分别为(2,3)、(4,1).

(1)求△ABO的面积;

(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.

(1)S△ABO=5;(2)A′(2,0),B′(4,-2),O′(0,-3). 【解析】试题分析:(1)利用面积的割补法求解,(2)根据点的平移规律,向下平移,横坐标不变,纵坐标减去平移得单位长度即可求解. 试题解析:(1)如图所示:S△ABO=3×4-×3×2-×4×1-×2×2=5, (2)A′(2,0),B′(4,-2),O′(0,-3).

(2012四川雅安)在平面直角坐标系中,三角形ABC的三个顶点坐标分别是A(4,5),B(1,2),C(4,2),将三角形ABC向左平移5个单位后,A点的对应点A′的坐标是( )

A.(0,5)

B.(-1,5)

C.(9,5)

D.(-1,0)

B 【解析】∵三角形ABC向左平移5个单位.∴A(4,5)向左平移了5个单位得到点A′,∴点A′的坐标为(4-5,5),即A′(-1,5).故选B.

已知y关于x的函数:y=(k-2)x2-2(k-1)x+k+1中满足k≤3.

求证:此函数图象与x轴总有交点;

见解析 【解析】试题分析:本题可将函数分成一次函数和二次函数两种情况讨论:当k=2时,函数为一次函数,与x轴一定有交点;当k≠2时,函数为二次函数,让y=0,根据根与系数的关系以及k的取值范围我们可判断出此时的方程是否有解,如果有解,则必与x轴有交点. 试题解析:分两种情况: (1)当k=2时,函数为y= -2x+3,图象与x轴有交点. (2)当k≠2时,△=4(k-1)2...

已知抛物线y=ax2-2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是( )

A. 第四象限 B. 第三象限 C. 第二象限 D. 第一象限

D 【解析】∵抛物线y=ax2-2x+1与x轴没有交点, ∴△=4-4a<0, 解得a>1, ∴抛物线的开口向上, 又∵b=-2, ∴ >0, ∴抛物线的对称轴在y轴的右侧, ∴抛物线的顶点在第一象限. 故选D.

等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有( )

A. 3个 B. 4个 C. 5个 D. 2个

A 【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个. 故选:A.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网