题目内容

如图,在△ABC和△ADE中,点E在BC上,∠BAD=∠CAE,∠B=∠D,AB=AD.求证:△ABC≌△ADE.
考点:全等三角形的判定
专题:证明题
分析:由∠BAD=∠CAE可得∠CAB=∠EAD,再结合条件可证明△ABC≌△ADE.
解答:证明:∵∠BAD=∠CAE,
∴∠CAE+∠EAB=∠BAD+∠EAB,
即∠CAB=∠EAD,
在△ABC和△ADE中,
∠B=∠D
AB=AD
∠CAB=∠EAD

∴△ABC≌△DEF(ASA).
点评:本题主要考查全等三角形的判定,掌握全等三角形的判定方法,即SSS、SAS、ASA、AAS和HL是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网