题目内容

5.已知:如图,△ABC中,AB=AC,∠B=30°,EA⊥AB,FA⊥AC.
(1)判断△AEF是什么特殊的三角形,并证明你的结论;
(2)求证:BF=EF=EC.

分析 (1)由等腰三角形的性质得出∠C=∠B=30°,求出∠AEF=∠AFE=90°-30°=60°,得出∠EAF=60°=∠AEF=∠AFE,即可得出结论;
(2)由等边三角形的性质得出AF=EF=AE,由三角形的外角性质得出∠B=∠FAB,证出BF=AF,同理:EC=AE,即可得出结论.

解答 (1)解:△AEF是等边三角形;理由如下:
∵AB=AC,∠B=30°,
∴∠C=∠B=30°,
∵EA⊥AB,FA⊥AC,
∴∠AEF=∠AFE=90°-30°=60°,
∴∠EAF=60°=∠AEF=∠AFE,
∴△AEF是等边三角形;
(2)证明:∵△AEF是等边三角形,
∴AF=EF=AE,
∵∠AFE=∠B+∠FAB,
∴∠FAB=60°-30°=30°,
∴∠FAB=∠B,
∴BF=AF,
同理:EC=AE,
∴BF=EF=EC.

点评 本题考查了等边三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质、直角三角形的性质;熟练掌握等边三角形的判定与性质是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网