题目内容

20.若抛物线y=ax2+c与x轴交于点A(m,0),B(n,0),与y轴交于点C(0,c),则称△ABC为“抛物三角形”.特别地,当mnc<0时,称△ABC为“倒抛物三角形”时,a、c应分别满足条件a<0,c>0.

分析 根据m、n关于y轴对称,则mn<0,则c的符号即可确定,然后根据抛物线与x轴有交点,则可以确定开口方向,从而确定a的符号.

解答 解:∵抛物线y=ax2+c的对称轴是y轴,
∴A(m,0)、B(n,0)关于y轴对称,
∴mn<0,
又∵mnc<0,
∴c>0,即抛物线与y轴的正半轴相交,
又∵抛物线y=ax2+c与x轴交于点A(m,0)、B(n,0),
∴函数开口向下,
∴a<0.
故答案是:a<0,c>0.

点评 本题考查了二次函数的性质,正确确定二次函数的开口方向是本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网