题目内容

18.已知,某等腰三角形的周长为12cm,设其底边长为ycm,腰长为xcm.
(1)写出y与x的函数关系式,并指出自变量x的取值范围;
(2)画出这个函数的图象.

分析 (1)根据等腰三角形周长公式可求出底边长与腰的函数关系式,由三角形两边之和大于第三边的关系可知x的取值范围;
(2)根据函数关系式及自变量取值范围可画出函数图象.

解答 解:(1)因为等腰三角形周长为12,根据等腰三角形周长公式可求出底边长y与腰x的函数关系式为:
y=12-2x,
由三角形两边之和大于第三边的关系可知:y<2x,2x<12,
即得12-2x<2x,x<6.
故3<x<6;

(2)函数y=12-2x,3<x<6的图象为:

点评 此题主要考查了一次函数的应用以及等腰三角形的周长及三边的关系,得出y与x的函数关系是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网