题目内容

1.计算:($\frac{4}{{x}^{2}{-y}^{2}}$+$\frac{x+y}{{xy}^{2}{-x}^{2}y}$)÷$\frac{{x}^{2}+xy-{2y}^{2}}{{x}^{2}y+2{xy}^{2}}$.

分析 根据分式的运算法则即可求出答案.

解答 解:原式=[$\frac{4}{(x+y)(x-y)}$+$\frac{x+y}{xy(y-x)}$]×$\frac{xy(x+2y)}{(x-y)(x+2y)}$
=[$\frac{4}{(x+y)(x-y)}$+$\frac{x+y}{xy(y-x)}$]×$\frac{xy}{x-y}$
=$\frac{4xy}{(x+y)(x-y)^{2}}$-$\frac{x+y}{(x-y)^{2}}$
=$\frac{4xy-(x+y)^{2}}{(x+y)(x-y)^{2}}$
=$\frac{4xy-{x}^{2}-2xy-{y}^{2}}{(x+y)(x-y)^{2}}$
=$\frac{-({x}^{2}-2xy+{y}^{2})}{(x+y)(x-y)^{2}}$
=$\frac{-(x-y)^{2}}{(x+y)(x-y)^{2}}$
=-$\frac{1}{x+y}$

点评 本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网