题目内容

若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为(  )

x

-7

-6

-5

-4

-3

-2

y

-27

-13

-3

3

5

3

A. -27

B. -13

C. -3

D. 5

A 【解析】设二次函数的解析式为, ∵当x=-4或-2时,y=3,由抛物线的对称性可知h=-3,k=5, ∴, 把(-2,3)代入得,a=-2, ∴二次函数的解析式为, 当x=1时,y=-27. 故选:A.
练习册系列答案
相关题目

计算(1)~(3)题,并根据计算结果将(4)~(6)题进行分解因式.

(1)(x-2)(x-1)=______; (2)3x(x-2)=______;

(3)(x-2)2=______; (4)3x2-6x=______;

(5)x2-4x+4=______; (6)x2-3x+2=______.

x2-3x+2 3x2-6x x2-4x+4 3x(x-2) (x-2)2 (x-2)(x-1) 【解析】(1)根据多项式乘以多项式的乘法法则可得(x-2)(x-1)=x2-3x+2;(2)根据单项式乘以多项式的乘法法则可得3x(x-2)=3x2-6x;(3)根据完全平方公式可得(x-2)2=x2-4x+4;(4)提取公因式3x可得3x2-6x=3x(x-2);(5)根据完全平方公式因式分解...

抛物线y=ax2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表:

x

-2

-1

0

1

2

y

0

4

6

6

4

从上表可知,下列说法中正确的是___________ (填写序号).

①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=0.5;④在对称轴左侧,y随x的增大而增大.

①③④ 【解析】根据图表,当x=-2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(-2,0)和(3,0); ∴抛物线的对称轴是直线x=3-, 根据表中数据得到抛物线的开口向下, ∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6, 并且在直线x=的左侧,y随x增大而增大. 所以①③④正确,②错. 故答案为:①③④.

已知抛物线与x轴的交点为(,0)和(-2,0),则因式分解的结果是__________

【解析】∵抛物线与x轴的交点为(,0)和(-2,0),a=5, ∴抛物线的解析式用交点式表示为 ∴= 即: =. 故答案为: .

形状与抛物线相同,对称轴是x=-2,且过点(0,3)的抛物线是( )

A.

B.

C.

D.

D 【解析】设所求抛物线的函数关系式为,由抛物线过点(0,3),可得:c=3, 由抛物线形状与相同, 分为两种情况:①开口向下,则a<0, 又∵对称轴x=-2,则x==-2.则b<0, 由此可得出B选项符合题意. ②开口向下,则a>0, 又∵对称轴x=-2,则x==-2.则b>0, 由此可得出A选项符合题意, 综合上述,符合条件的是选项D. ...

一列火车从车站开出,预计行程为450千米,当它出发3小时后,因特殊情况而多 停一站,因此耽误30分钟,后来把速度提高了20%,结果准时到达目的地,求这列火车原来的速度.

75千米/时. 【解析】试题分析:设这列火车原来的速度为每小时x千米,则提速后速度为每小时(1+20%)x千米,根据题意可得等量关系:按原速度行驶(450-x)千米所用时间=提速后行驶(450-x)千米所用时间+,列出方程,求解即可. 试题解析:设这列火车原来的速度为x千米/时,根据题意, 得+, 解得x=75, 经检验x=75是原方程的解, 所以,这列火车原来...

当a=_______时,方程=2的解为4.

【解析】由题意得: , 解得:a=, 经检验a=符合原方程, 故答案为: .

已知抛物线y=ax2+bx+c的大致图象如图所示,试确定a,b,c,b2-4ac及a+b+c的符号.

a+b+c>0 【解析】分析:根据二次函数的图形确定a、b、c的符号,根据抛物线与x轴的交点确定的符号,由当x=1时,函数值的符号确定a+b+c的符号. 本题解析: ∵抛物线开口向上,∴a>0.∵抛物线与y轴的交点在y轴的负半轴上,∴C<0.又∵对称轴在y轴左侧,∴ab>0.∵a>0,∴b>0.∵抛物线与x轴有两个交点,∴△=b2-4ac>0.∵当x=1时,y>0,∴a+b+c>...

如图,在□ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论

【解析】根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF,BE∥DF. 【解析】 由题意得:BE=DF,BE∥DF.理由如下: 连接DE、BF. ∵ABCD是平行四边形, ∴OA=OC,OB=OD, ∵E,F分别是...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网