题目内容

抛物线y=ax2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表:

x

-2

-1

0

1

2

y

0

4

6

6

4

从上表可知,下列说法中正确的是___________ (填写序号).

①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=0.5;④在对称轴左侧,y随x的增大而增大.

①③④ 【解析】根据图表,当x=-2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(-2,0)和(3,0); ∴抛物线的对称轴是直线x=3-, 根据表中数据得到抛物线的开口向下, ∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6, 并且在直线x=的左侧,y随x增大而增大. 所以①③④正确,②错. 故答案为:①③④.
练习册系列答案
相关题目

下列说法中错误的是( )

A .在函数y=-x2中,当x=0时y有最大值0

B.在函数y=2x2中,当x>0时y随x的增大而增大

C.抛物线y=2x2,y=-x2,中,抛物线y=2x2的开口最小,抛物线y=-x2的开口最大

D.不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点

C 【解析】由函数的解析式y=-x2,可知a=-1<0,得到函数的开口向下,有最大值y=0,故A正确; 由函数的解析式y=2x2,可知其对称轴为y轴,对称轴的左边(x<0),y随x增大而减小,对称轴的右边(x>0),y随x增大而增大,故B正确; 根据二次函数的性质,可知系数a决定开口方向和开口大小,且a的值越大开口越小,可知抛物线y=2x2的开口最小,抛物线y=-x2的开口第二小...

抛物线经过平移得到,平移方法是(  )

A. 向右平移1个单位,再向上平移1个单位

B. 向右平移1个单位,再向下平移1个单位

C. 向左平移1个单位,再向上平移1个单位

D. 向左平移1个单位,再向下平移1个单位

C 【解析】由抛物线得到顶点坐标为(1,-1),而平移后抛物线的顶点坐标为(0,0),根据顶点坐标的变化寻找平移方法为:向左平移1个单位,再向上平移1个单位. 故选:C.

函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是(  )

A. B. C. D.

B 【解析】A选项中,若反比例函数如图,则,那么抛物线应与y轴交于负半轴,所以A不可能; B选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以B可能; C选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以C不可能; D选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以D不可能; 故选B. ...

已知二次函数的图象经过点(0,-1)、(1,-3)、(-1,3),求这个二次函数的解析式.

【解析】分析:设二次函数的解析式为,再把(0,-1)、(1,-3)、(-1,3)分别代入得到关于a、b、c的方程组,解方程组求出a、b、c的值,从而得到二次函数的解析式. 本题解析:设二次函数的解析式为, 由题意得, 解得. 故二次函数的解析式为.

若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为(  )

x

-7

-6

-5

-4

-3

-2

y

-27

-13

-3

3

5

3

A. -27

B. -13

C. -3

D. 5

A 【解析】设二次函数的解析式为, ∵当x=-4或-2时,y=3,由抛物线的对称性可知h=-3,k=5, ∴, 把(-2,3)代入得,a=-2, ∴二次函数的解析式为, 当x=1时,y=-27. 故选:A.

如果点(-2,-3)和(5,-3)都是抛物线y=ax2+bx+c上的点,那么抛物线的对称轴是 ( )

A. x=3 B. x=-3 C. x= D. x=-

C 【解析】点(?2,?3)和(5,?3)都是抛物线y=ax²+bx+c上的点,得 (?2,?3)、(5,?3)关于对称轴对称, 即对称轴过(?2,?3)、(5,?3)的中点, x=, 故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网