题目内容

计算(1)~(3)题,并根据计算结果将(4)~(6)题进行分解因式.

(1)(x-2)(x-1)=______; (2)3x(x-2)=______;

(3)(x-2)2=______; (4)3x2-6x=______;

(5)x2-4x+4=______; (6)x2-3x+2=______.

x2-3x+2 3x2-6x x2-4x+4 3x(x-2) (x-2)2 (x-2)(x-1) 【解析】(1)根据多项式乘以多项式的乘法法则可得(x-2)(x-1)=x2-3x+2;(2)根据单项式乘以多项式的乘法法则可得3x(x-2)=3x2-6x;(3)根据完全平方公式可得(x-2)2=x2-4x+4;(4)提取公因式3x可得3x2-6x=3x(x-2);(5)根据完全平方公式因式分解...
练习册系列答案
相关题目

抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x-1)2-4,则b,c的值分别为( )

A. b=2,c=-6 B. b=2,c=0

C. b=-6,c=8 D. b=-6,c=2

B 【解析】试题分析:先确定出平移后的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移前的抛物线的顶点坐标,然后写出平移前的抛物线的顶点式形式,然后整理成一般形式,即可得到b、c的值. 【解析】 函数y=(x﹣1)2﹣4的顶点坐标为(1,﹣4), ∵是向右平移2个单位,再向下平移3个单位得到, ∴1﹣2=﹣1,﹣4+3=﹣1, ∴平移前的抛物线的...

下列说法中错误的是( )

A .在函数y=-x2中,当x=0时y有最大值0

B.在函数y=2x2中,当x>0时y随x的增大而增大

C.抛物线y=2x2,y=-x2,中,抛物线y=2x2的开口最小,抛物线y=-x2的开口最大

D.不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点

C 【解析】由函数的解析式y=-x2,可知a=-1<0,得到函数的开口向下,有最大值y=0,故A正确; 由函数的解析式y=2x2,可知其对称轴为y轴,对称轴的左边(x<0),y随x增大而减小,对称轴的右边(x>0),y随x增大而增大,故B正确; 根据二次函数的性质,可知系数a决定开口方向和开口大小,且a的值越大开口越小,可知抛物线y=2x2的开口最小,抛物线y=-x2的开口第二小...

把(x-y)2-(y-x)分解因式为( )

A.(x-y)(x-y-1) B.(y-x)(x-y-1)

C.(y-x)(y-x-1) D.(y-x)(y-x+1)

C 【解析】 试题分析:化(x-y)2-(y-x)=(y-x)2-(y-x),再提取公因式(y-x)即可得到结果. (x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1),故选C.

多项式的公因式是

x+3 【解析】分别将多项式ax2-4a与多项式x2-4x+4进行因式分解,再寻找他们的公因式. 【解析】 ∵x2-9=(x-3)(x+3), x2+6x+9=(x+3)2, ∴多项式x2-9与多项式x2+6x+9的公因式是x+3.

已知不论x为何值,x2-kx-15=(x+5)(x-3),则k值为( )

A. 2 B. -2 C. 5 D. -3

B 【解析】∵x2-kx-15=(x+5)(x-3)=x2+2x-15, ∴k=-2. 故选B.

抛物线经过平移得到,平移方法是(  )

A. 向右平移1个单位,再向上平移1个单位

B. 向右平移1个单位,再向下平移1个单位

C. 向左平移1个单位,再向上平移1个单位

D. 向左平移1个单位,再向下平移1个单位

C 【解析】由抛物线得到顶点坐标为(1,-1),而平移后抛物线的顶点坐标为(0,0),根据顶点坐标的变化寻找平移方法为:向左平移1个单位,再向上平移1个单位. 故选:C.

若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为(  )

x

-7

-6

-5

-4

-3

-2

y

-27

-13

-3

3

5

3

A. -27

B. -13

C. -3

D. 5

A 【解析】设二次函数的解析式为, ∵当x=-4或-2时,y=3,由抛物线的对称性可知h=-3,k=5, ∴, 把(-2,3)代入得,a=-2, ∴二次函数的解析式为, 当x=1时,y=-27. 故选:A.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网