题目内容

8.一批树苗按下列方法依次由各班领取:第一班取100棵和余下的$\frac{1}{10}$,第二班取200棵和余下的$\frac{1}{10}$,第三班取300棵和余下的$\frac{1}{10}$,…最后树苗全部被取完,且各班的树苗都相等.求树苗总数和班级数.设树苗总数是x棵,班级数是y个,根据题意列出的正确方程或方程组的个数有(  )
(1)100+$\frac{1}{10}$(x-100)=200+$\frac{1}{10}${x-[100+$\frac{1}{10}$(x-100)]-200}
(2)100y=100(y-1)+$\frac{1}{9}$×100y
(3)$\left\{\begin{array}{l}{[100+\frac{1}{10}(x-100)]y=x}\\{100{y}^{2}=x}\end{array}$
(4)(x-100)[$\frac{1}{10}-(1-\frac{1}{10})×\frac{1}{10}]=(200-100)-200×\frac{1}{10}$=(200-100)-200×$\frac{1}{10}$.
A.1个B.2个C.3个D.4个

分析 设树苗总数为x棵,根据各班的树苗数都相等,可得出第一班和第二班领取的树苗数相等,由此可得出方程.

解答 解:设树苗总数是x棵,班级数是y个,根据题意列出的方程或方程组有(1)100+$\frac{1}{10}$(x-100)=200+$\frac{1}{10}${x-[100+$\frac{1}{10}$(x-100)]-200}
(2)100y=100(y-1)+$\frac{1}{9}$×100y
(3)$\left\{\begin{array}{l}{[100+\frac{1}{10}(x-100)]y=x}\\{100{y}^{2}=x}\end{array}$
(4)(x-100)[$\frac{1}{10}-(1-\frac{1}{10})×\frac{1}{10}]=(200-100)-200×\frac{1}{10}$=(200-100)-200×$\frac{1}{10}$.
故选D.

点评 本题考查了一元一次方程的应用,解答本题的关键是得出各班的树苗数都相等,这个等量关系,因为第一班,第二班领取数量好表示,所以我们就选取这两班建立等量关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网