题目内容

14.如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,则∠AED=60°
 ②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.
(2)拓展应用:
如图②,射线FE与l1,l2交于分别交于点E、F,AB∥CD,a,b,c,d分别是被射线FE隔开的4个区域(不含边界,其中区域a,b位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).

分析 (1)①过E作EF∥AB,根据AB∥CD,可得AB∥EF∥CD,再根据两直线平行,内错角相等进行计算即可;
②作辅助线构造内错角,依据两直线平行,内错角相等或三角形外角性质,进行计算即可;
(2)根据a,b,c,d分别是被射线FE隔开的4个区域,P是位于四个区域上的点,画出对应的图形,进而得出结论.

解答 解:(1)①过E作EF∥AB,

∵AB∥CD,
∴AB∥EF∥CD,
∴∠A=∠AEF=20°,∠D=∠DEF=40°,
∴∠AED=∠AEF+∠DEF=∠A+∠D=60°,
故答案为:60;

②∠AED=∠A+∠D,
证明:方法一、延长DE交AB于F,如图1,

∵AB∥CD,
∴∠DFA=∠D,
∴∠AED=∠A+∠DFA;

方法二、过E作EF∥AB,如图2,

∵AB∥CD,
∴AB∥EF∥CD,
∴∠A=∠AEF,∠D=∠DEF,
∴∠AED=∠AEF+∠DEF=∠A+∠D;

(2)当P在a区域时,如图3,∠PEB=∠PFC+∠EPF;

当P点在b区域时,如图4,∠PFC=∠PEB+∠EPF;

当P点在区域c时,如图5,∠EPF+∠PEB+∠PFC=360°;

当P点在区域d时,如图6,∠EPF=∠PEB+∠PFC.

点评 本题主要考查了平行线的性质,以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网