题目内容

如图,在Rt△ABC中,∠C=90°,∠B=60°,内切圆O与边AB、BC、CA分别相切于点D、E、F,则∠DEF的度数为
 
°.
考点:三角形的内切圆与内心,圆周角定理
专题:
分析:连接DO,FO,利用切线的性质得出∠ODA=∠OFA=90°,再利用三角形内角和以及四边形内角和定理求出∠DOF的度数,进而利用圆周角定理得出∠DEF的度数.
解答:解:连接DO,FO,
∵在Rt△ABC中,∠C=90°,∠B=60°
∴∠A=30°,
∵内切圆O与边AB、BC、CA分别相切于点D、E、F,
∴∠ODA=∠OFA=90°,
∴∠DOF=150°,
∴∠DEF的度数为75°.
故答案为:75.
点评:此题主要考查了圆周角定理以及切线的性质和四边形内角和定理等知识,得出∠DOF=150°是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网