题目内容

已知在△ABC中,AB=AC。

(1)若D为AC的中点,BD把三角形的周长分为24cm和30cm两部分,求△ABC三边的长;

(2)若D为AC上一点,试说明AC>(BD+DC)。

(1)三角形的三边长为16,16,22或20,20,14;(2)理由见解析 【解析】试题分析:(1)分两种情况讨论:当AB+AD=30,BC+DC=24或AB+AD=24,BC+DC=30,所以根据等腰三角形的两腰相等和中线的性质可求得,三边长为16,16,22或20,20,14; (2)根据三角形两边之和大于第三边即可得到AC>(BD+DC). 试题解析: (1)设三角形...
练习册系列答案
相关题目

下列事件为必然事件的是(  )

A. 小王参加本次数学考试,成绩是150分

B. 某射击运动员射靶一次,正中靶心

C. 打开电视机,CCTV第一套节目正在播放新闻

D. 口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球

D 【解析】试题分析:A.小王参加本次数学考试,成绩是150分是随机事件,故A选项错误; B.某射击运动员射靶一次,正中靶心是随机事件,故B选项错误; C.打开电视机,中央一套节目正在播放新闻是随机事件,故C选项错误. D.口袋中装有两个红球和一个白球,从中摸出两个球,其中必有红球是必然事件,故D选项正确; 故选D.

将点A(3,2)沿x轴向左平移4个单位长度得到点A′,则点A′关于原点对称的点的坐标是( )

A. (-3,2) B. (-1,2) C. (1,2) D. (1,-2)

D 【解析】试题分析:将点A(3,2)向左平移4个单位长度得点A′,可得点A′的坐标为(﹣1,2),所以点A′关于y轴对称的点的坐标是(1,2),故选D.

二次函数y=x2﹣2x+6的最小值是____.

5 【解析】试题分析:y=x2﹣2x+6=x2﹣2x+1+5 =(x﹣1)2+5, 可见,二次函数的最小值为5.

如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为(  )

A. B. C. D.

B 【解析】试题分析:∵a<0, ∴抛物线的开口方向向下, 故第三个选项错误; ∵c<0, ∴抛物线与y轴的交点为在y轴的负半轴上, 故第一个选项错误; ∵a<0、b>0,对称轴为x=>0, ∴对称轴在y轴右侧, 故第四个选项错误. 故选B.

如图,已知等边△AEB和等边△BDC在线段AC同侧,则下面错误的是(  )

A. △ABD≌△EBC B. △NBC≌△MBD C. DM=DC D. ∠ABD=∠EBC

C 【解析】选项A,可以利用SAS验证,正确;选项B,可以利用AAS验证,正确;选项C,可证∠MBN=60°,若DM=DC=DB,则△DMB为等边三角形,即∠BDM=60°,∵∠EAB=∠DBC,∴AE∥BD.∴∠BDM=∠EAD=60°.与已知不符,错误;选项D,可由∠ABE,∠DBC同加一个∠DBE得到,正确.所以错误的是第三个,故选C.

已知一直角边和这条直角边的对角,求作直角三角形(用尺规作图,不写作法,但要保留作图痕迹).

见解析 【解析】试题分析:根据题意写出已知和求作,然后再画出图形即可. 试题解析:已知:线段a和∠α,如下图(1). 求作:Rt△ABC,使BC=a,∠C=90?,∠A=∠α. 作法:(1)作∠α的余角∠β. (2)作∠MBN=∠β. (3)在射线BM上截取BC=a. (4)过点C作CA⊥BM,交BN于点A,如图(2). △ABC就是所求的直角三角形...

三角形内有一点,它到三边的距离相等,则这点是该三角形的(  )

A. 三条中线交点 B. 三条角平分线交点

C. 三条高线交点 D. 三条高线所在直线交点

B 【解析】根据三角形角平分线上的点到角的两边的距离相等可得此点为角平分线的交点. 故选:B.

若将抛物线y=2x2向上平移3个单位,所得抛物线的解析式为( )

A.y=2x2+3 B.y=2x2﹣3 C.y=2(x﹣3)2 D.y=2(x+3)2

A. 【解析】 试题分析:由“上加下减”的原则可知,将二次函数y=2x2向上平移3个单位可得到函数y=2x2+3, 故选:A.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网