题目内容

下列事件为必然事件的是(  )

A. 小王参加本次数学考试,成绩是150分

B. 某射击运动员射靶一次,正中靶心

C. 打开电视机,CCTV第一套节目正在播放新闻

D. 口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球

D 【解析】试题分析:A.小王参加本次数学考试,成绩是150分是随机事件,故A选项错误; B.某射击运动员射靶一次,正中靶心是随机事件,故B选项错误; C.打开电视机,中央一套节目正在播放新闻是随机事件,故C选项错误. D.口袋中装有两个红球和一个白球,从中摸出两个球,其中必有红球是必然事件,故D选项正确; 故选D.
练习册系列答案
相关题目

如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

(1)详见解析;(2). 【解析】试题分析:(1)由平行四边形的性质和角平分线易证∠BAE=∠BEA,根据等腰三角形的性质可得AB=BE;(2)易证△ABE是等边三角形,根据等边三角形的性质可得AE=AB=4,AF=EF=2,由勾股定理求出BF,再由AAS证明△ADF≌△ECF,即△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积=AE•BF,即可得出结果. ...

已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是(  )

A. x≥1 B. x≥0 C. x≥﹣1 D. x≥﹣2

A 【解析】【解析】 ∵y=﹣2x2+4x﹣3=﹣2(x﹣1)2﹣1,∴抛物线开口向下,对称轴为x=1,∴当x≥1时,y随x的增大而减小.故选A.

请用“一定”、“很可能”、“可能性极小”、“可能”、“不太可能”、“不可能”等语言来描述下列事件的可能性.

(1)买20注彩票,获特等奖500万.

(2)袋中有20个球,1个红的,19个白的,从中任取一球,取到红色的球.

(3)掷一枚均匀的骰子,6点朝上.

(4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品.

(5)早晨太阳从东方升起.

(6)小丽能跳100m高.

(1)可能性极小;(2)不太可能;(3)可能;(4)很可能;(5)一定;(6)不可能. 【解析】试题分析:事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小. 试题解析:(1)买20注彩票,获特等奖500万,可能性极小; (2)袋中有20个球,1个红的,19个白的,从中任取一球,取到红色的球,不太可能; (3)掷一枚均匀的骰子,6点朝上,可能; (4)100件产品...

初一(3)班共有学生50人,其中男生有21人,女生29人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性__(填“大”或“小”).

小 【解析】只要比较男生人数与女生人数的多少即可. 【解析】 男生人数少于女生人数,因而找到男生的可能性比找到女生的可能性小.

下列成语所描述的事件是必然发生的是(  )

A. 水中捞月 B. 拔苗助长 C. 守株待兔 D. 瓮中捉鳖

D 【解析】试题分析:必然事件是指一定会发生的事件;不可能事件是指不可能发生的事件;随机事件是指可能发生也可能不发生的事件。根据定义,对每个选项逐一判断A选项,不可能事件 B选项,不可能事件 C选项,随机事件D选项,必然事件

在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=xm.

(1)若花园的面积为192m2,求x的值;

(2)若在P处有一棵树与墙CD、AD的距离分别是13m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

(1)12或16(2)当x=13时,S最大=195 【解析】试题分析:(1)根据题意得出长×宽=192,进而得出答案; (2)由在P处有一棵树与墙CD,AD的距离分别是13m和6m,求出x的取值范围,根据二次的性质求解即可. 试题解析:(1)(28-x)x=192,解得x1=12,x2=16, ∴x的值为12或16. (2)∵S=x(28-x)=-x2+28x(6≤x≤1...

如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB',则点B'的坐标为_____.

(4,2) 【解析】试题分析:画出旋转后的图形位置,根据图形求解. 试题解析:AB旋转后位置如图所示. B′(4,2).

已知在△ABC中,AB=AC。

(1)若D为AC的中点,BD把三角形的周长分为24cm和30cm两部分,求△ABC三边的长;

(2)若D为AC上一点,试说明AC>(BD+DC)。

(1)三角形的三边长为16,16,22或20,20,14;(2)理由见解析 【解析】试题分析:(1)分两种情况讨论:当AB+AD=30,BC+DC=24或AB+AD=24,BC+DC=30,所以根据等腰三角形的两腰相等和中线的性质可求得,三边长为16,16,22或20,20,14; (2)根据三角形两边之和大于第三边即可得到AC>(BD+DC). 试题解析: (1)设三角形...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网