题目内容

17.如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上则a的值是(  )
A.1B.2C.3D.4

分析 作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.

解答 解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.
在y=-3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).
令y=0,解得:x=1,即A的坐标是(1,0).
则OB=3,OA=1.
∵∠BAD=90°,
∴∠BAO+∠DAF=90°,
又∵直角△ABO中,∠BAO+∠OBA=90°,
∴∠DAF=∠OBA,
在△OAB和△FDA中,
$\left\{\begin{array}{l}{∠DAF=∠OBA}\\{∠BOA=∠AFD}\\{AD=AD}\end{array}\right.$,
∴△OAB≌△FDA(AAS),
同理,△OAB≌△FDA≌△BEC,
∴AF=OB=EC=3,DF=OA=BE=1,
故D的坐标是(4,1),C的坐标是(3,4).代入y=$\frac{k}{x}$得:k=4,则函数的解析式是:y=$\frac{4}{x}$.
∴OE=4,
则C的纵坐标是4,把y=4代入y=$\frac{4}{x}$得:x=1.即G的坐标是(1,4),
∴CG=2,
∴a=2.
故选B.

点评 本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得C、D的坐标是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网