题目内容

14.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是(  )
A.42B.32C.42或32D.42或37

分析 本题应分两种情况进行讨论:
(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;
(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.

解答 解:此题应分两种情况说明:
(1)当△ABC为锐角三角形时,在Rt△ABD中,
BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=9,
在Rt△ACD中,
CD=$\sqrt{A{C}^{2}-A{D}^{2}}$=5
∴BC=5+9=14
∴△ABC的周长为:15+13+14=42;

(2)当△ABC为钝角三角形时,
在Rt△ABD中,BD=9,
在Rt△ACD中,CD=5,
∴BC=9-5=4.
∴△ABC的周长为:15+13+4=32
∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.
综上所述,△ABC的周长是42或32.
故选:C.

点评 此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网