题目内容

如图,抛物线与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(﹣1,0).

(1)求该抛物线的解析式及顶点M的坐标;

(2)求△EMF与△BNF的面积之比.

(1),(1,4);(2). 【解析】试题分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标. (2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比. 试题解析:【解析】 (1)∵点A在抛物线上, ∴,解得:c=3, ∴抛物线的解析式为. ∵, ∴抛物线的顶点M(1,4); (2)∵A(﹣1,0),抛物...
练习册系列答案
相关题目

图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是(  )

A. y=4n﹣4 B. y=4n C. y=4n+4 D. y=n2

B 【解析】试题解析:由题图可知: n=1时,圆点有4个,即y=4; n=2时,圆点有8个,即y=8; n=3时,圆点有12个,即y=12; …… ∴y=4n. 故选:B.

若点A(2, ),B(-3, ),C(-1, )三点在抛物线的图象上,则的大小关系是(  )

A.

B.

C.

D.

C 【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2, )中x=2,知最小,再由B(-3, ),C(-1, )都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得. 故选:C.

如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;

②4a+2b+c<0;

③一元二次方程ax2+bx+c=1的两根之和为﹣1;

④使y≤3成立的x的取值范围是x≥0.

其中正确的个数有(   )

A. 1个 B. 2个 C. 3个 D. 4个

B 【解析】试题解析:∵抛物线的顶点坐标为(-1,4),∴二次三项式ax2+bx+c的最大值为4,①正确; ∵x=2时,y<0,∴4a+2b+c<0,②正确; 根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为-2,③错误; 使y≤3成立的x的取值范围是x≥0或x≤-2,④错误, 故选B.

如果函数与函数的顶点相同,且其中一个函数经过点(2,7),求这两个函数的解析式.

, 【解析】分析:先求出函数与函数的顶点,然后根据题意求得b、c的值;再由已知条件“其中一个函数经过点(2,7)”,利用待定系数法求得函数的解析式. 本题解析:∵函数的顶点是(1,c), 函数的顶点是(-b,-5), ∴1=-b,即b=-1,c=-5; ∴函数的解析式为: ; 又∵其中一个函数经过点(2,7), ∴函数经过点(2,7), ∴,解得,a...

若二次函数配方后为,则m,k的值分别为( )

A. 0,6

B. 0,2

C. 4,6

D. 4,2

D 【解析】∵, , ∴, ∴-4=-m,4+k=6, ∴m=4,k=2. 故选:D.

当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为(  )

A. ﹣2 B. 或- C. 2或- D. 2或﹣或-

C 【解析】由题意得该抛物线的对称轴为x=m. ①当-2≤m≤1时,此时最大值为,即=4, 解得m= (舍去)或m=-; ②当m>1时,此时当x=1时,函数有最大值,所以, 解得m=2; ③当m<-2时,此时x=-2函数有最大值,所以, 解得m= (不合题意,舍去). 综上所述,m= -或m=2. 所以C选项是正确的.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网