题目内容

图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是(  )

A. y=4n﹣4 B. y=4n C. y=4n+4 D. y=n2

B 【解析】试题解析:由题图可知: n=1时,圆点有4个,即y=4; n=2时,圆点有8个,即y=8; n=3时,圆点有12个,即y=12; …… ∴y=4n. 故选:B.
练习册系列答案
相关题目

不论m为何实数,抛物线y=x2-mx+m-2( )

A.在x轴上方 B.与x轴只有一个交点

C.与x轴有两个交点 D.在x轴下方

C 【解析】 试题分析:,当△=-4ac>0时,函数与x轴有两个交点;当△=-4ac=0时,函数与x轴有一个交点;当△=-4ac<0时,函数与x轴没有交点.根据题意可得:△=-4(m-2)=+4>0,则函数与x轴有两个交点.

河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1: 则AB的长为_______

12米 【解析】试题分析:根据BC=6m,坡比为1: 可得:AC=6m,最后根据Rt△ABC的勾股定理可得:AB=12米.

如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为(  )

A. (11﹣2)米 B. (11﹣2)米 C. (11﹣2)米 D. (11﹣4)米

D 【解析】试题解析:如图,延长OD,BC交于点P. ∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米, ∴在直角△CPD中,DP=DC•cot30°=2m,PC=CD÷(sin30°)=4米, ∵∠P=∠P,∠PDC=∠B=90°, ∴△PDC∽△PBO, ∴, ∴PB=米, ∴BC=PB-PC=米. 故选B.

抛物线y=x2-2x+3的顶点坐标是_______.

(1,2) 【解析】试题解析:∵y=x2-2x+3=x2-2x+1-1+3=(x-1)2+2, ∴抛物线y=x2-2x+3的顶点坐标是(1,2)

下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )

A. y=x(x+1) B. xy=1

C. y=2x2-2(x+1)2 D.

CBA 【解析】根据题意可知y=x(x+1)=x2+x,可由二次函数的定义,可知是二次函数;根据xy=1是反比例关系,所以是反比例函数;而y=2x2-2(x+1)2= y=2x2-2(x2+2x+1)=-4x-2,是一次函数;函数是带二次根号的函数. 故答案为:C、B、A.

如果x+y=5,xy=2,求的值

10;21. 【解析】试题分析:(1)因式分解后直接代入求值即可;(2)化为(x+y)2-2xy后代入求值即可. 试题解析: ∵x+y=5,xy=2, ∴=xy(x+y)=2×5=10; =(x+y)2-2xy=52-2×2=25-4=21.

若关于x的多项式3x2+mx+n分解因式的结果为(3x+2)(x-1),求m、n的值.

m=-1,n=-2. 【解析】试题分析:把(3x+2)(x-1)利用多项式乘以多项式的法则展开,与多项式3x2+mx+n比较,即可得m、n的值. 试题解析: 由题意可得:(3x+2)(x-1)=3x2+2x-3x-2=3x2-x-2=3x2+mx+n, 所以m=-1,n=-2.

如图,抛物线与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(﹣1,0).

(1)求该抛物线的解析式及顶点M的坐标;

(2)求△EMF与△BNF的面积之比.

(1),(1,4);(2). 【解析】试题分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标. (2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比. 试题解析:【解析】 (1)∵点A在抛物线上, ∴,解得:c=3, ∴抛物线的解析式为. ∵, ∴抛物线的顶点M(1,4); (2)∵A(﹣1,0),抛物...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网