题目内容

若点A(2, ),B(-3, ),C(-1, )三点在抛物线的图象上,则的大小关系是(  )

A.

B.

C.

D.

C 【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2, )中x=2,知最小,再由B(-3, ),C(-1, )都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得. 故选:C.
练习册系列答案
相关题目

如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为(  )

A. (11﹣2)米 B. (11﹣2)米 C. (11﹣2)米 D. (11﹣4)米

D 【解析】试题解析:如图,延长OD,BC交于点P. ∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米, ∴在直角△CPD中,DP=DC•cot30°=2m,PC=CD÷(sin30°)=4米, ∵∠P=∠P,∠PDC=∠B=90°, ∴△PDC∽△PBO, ∴, ∴PB=米, ∴BC=PB-PC=米. 故选B.

若关于x的多项式3x2+mx+n分解因式的结果为(3x+2)(x-1),求m、n的值.

m=-1,n=-2. 【解析】试题分析:把(3x+2)(x-1)利用多项式乘以多项式的法则展开,与多项式3x2+mx+n比较,即可得m、n的值. 试题解析: 由题意可得:(3x+2)(x-1)=3x2+2x-3x-2=3x2-x-2=3x2+mx+n, 所以m=-1,n=-2.

已知m,n是关于x的方程的两实根,求的最小值.

8 【解析】试题分析:根据方程有两个根,利用根的判别式求出a的取值范围,再根据根与系数的关系求出m+n与mn的值,然后把整理成m+n与mn的形式,代入进行计算求解. 试题解析:依题意△=≥0, 即, ∴a≤-2或a≥3, 由m+n=2a,mn=a+6, 即 = = =, ∴a=3时,y的最小值为8. 故答案为:8.

已知二次函数的图象开口向下,则m的取值范围是________

m<2 【解析】由二次函数的图象的开口方向,知m-2<0,确定m的取值范围m<2. 故答案为:m<2.

如图图形中,阴影部分面积相等的是(  )

A. 甲 乙

B. 甲 丙

C. 乙 丙

D. 丙 丁

B 【解析】根据题意,可知: 甲:直线与x轴交点为(3,0),与y轴的交点为(0,4),则阴影部分的面积为×3×4=6; 乙:阴影部分为斜边为4的等腰直角三角形,其面积为×4×2=4; 丙:抛物线与x轴的两个交点为(-3,0)与(3,0),顶点坐标为(0,-2),则阴影部分的面积为×6×2=6; 丁:此函数是反比例函数,那么阴影部分的面积为×6=3; 因此甲、丙...

如图,抛物线与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(﹣1,0).

(1)求该抛物线的解析式及顶点M的坐标;

(2)求△EMF与△BNF的面积之比.

(1),(1,4);(2). 【解析】试题分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标. (2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比. 试题解析:【解析】 (1)∵点A在抛物线上, ∴,解得:c=3, ∴抛物线的解析式为. ∵, ∴抛物线的顶点M(1,4); (2)∵A(﹣1,0),抛物...

如图所示,矩形A′BC′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕点B逆时针旋转得到的.点O′在x轴的正半轴上,点B的坐标为(1,3).

(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点,且图象顶点M的纵坐标为-l,求这个二次函数的解析式;

(2)在(1)中求出的二次函数图象对称轴的右侧,是否存在点P,使得△POM为直角三角形?若存在,求出点P的坐标和△POM的面积;若不存在,请说明理由;

(3)求边C′O′所在直线的解析式.

(1) y=x2-2x(2)1(3)y= 【解析】分析:(1)连接BO,B则B0=B,求出M点坐标,列出方程组求出未知数的值,进而求出二次函数的解析式;(2)设存在满足题设条件的点P(x,y),连接OM,PM,OP,过P作PN⊥x轴,求出P点坐标和△POM的面积.(3)已知 (2,0),点D的横坐标为1,由相似关系求其纵坐标,用待定系数法求解析式. 本题解析:(1)如图2-83所示,连...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网