题目内容

观察下面算962×95+962×5的解题过程,其中最简单的方法是( )

A. 962×95+962×5=962×(95+5)=962×100=96200

B. 962×95+962×5=962×5×(19+1)=962×(5×20) =96200

C. 962×95+962×5=5×(962×19+962)=5×(18278+962)=96200

D. 962×95+962×5=91390+4810=96200

A 【解析】计算962×95+962×5的值,最简单的方法先提取公因式962,即962×95+962×5=962×(95+5)=962×100=96200,故选A.
练习册系列答案
相关题目

河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1: 则AB的长为_______

12米 【解析】试题分析:根据BC=6m,坡比为1: 可得:AC=6m,最后根据Rt△ABC的勾股定理可得:AB=12米.

如果x+y=5,xy=2,求的值

10;21. 【解析】试题分析:(1)因式分解后直接代入求值即可;(2)化为(x+y)2-2xy后代入求值即可. 试题解析: ∵x+y=5,xy=2, ∴=xy(x+y)=2×5=10; =(x+y)2-2xy=52-2×2=25-4=21.

若关于x的多项式3x2+mx+n分解因式的结果为(3x+2)(x-1),求m、n的值.

m=-1,n=-2. 【解析】试题分析:把(3x+2)(x-1)利用多项式乘以多项式的法则展开,与多项式3x2+mx+n比较,即可得m、n的值. 试题解析: 由题意可得:(3x+2)(x-1)=3x2+2x-3x-2=3x2-x-2=3x2+mx+n, 所以m=-1,n=-2.

已知不论x为何值,x2-kx-15=(x+5)(x-3),则k值为( )

A. 2 B. -2 C. 5 D. -3

B 【解析】∵x2-kx-15=(x+5)(x-3)=x2+2x-15, ∴k=-2. 故选B.

已知m,n是关于x的方程的两实根,求的最小值.

8 【解析】试题分析:根据方程有两个根,利用根的判别式求出a的取值范围,再根据根与系数的关系求出m+n与mn的值,然后把整理成m+n与mn的形式,代入进行计算求解. 试题解析:依题意△=≥0, 即, ∴a≤-2或a≥3, 由m+n=2a,mn=a+6, 即 = = =, ∴a=3时,y的最小值为8. 故答案为:8.

已知二次函数的图象开口向下,则m的取值范围是________

m<2 【解析】由二次函数的图象的开口方向,知m-2<0,确定m的取值范围m<2. 故答案为:m<2.

如图,抛物线与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(﹣1,0).

(1)求该抛物线的解析式及顶点M的坐标;

(2)求△EMF与△BNF的面积之比.

(1),(1,4);(2). 【解析】试题分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标. (2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比. 试题解析:【解析】 (1)∵点A在抛物线上, ∴,解得:c=3, ∴抛物线的解析式为. ∵, ∴抛物线的顶点M(1,4); (2)∵A(﹣1,0),抛物...

一项工作,若甲单独完成需x小时,则甲每小时完成工作的________.若甲、乙合作 需8小时完成,则乙每小时完成工作的_______.

【解析】一项工作,若甲单独完成需x小时,则甲每小时完成工作的, 若甲、乙合作需8小时完成,则乙每小时完成工作的, 故答案为: , .

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网