ÌâÄ¿ÄÚÈÝ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¶ÔÓÚÈÎÒâÈýµãA£¬B£¬C£¬¸ø³öÈç϶¨Ò壺
Èô¾ØÐεÄÈκÎÒ»Ìõ±ß¾ùÓëijÌõ×ø±êÖáÆ½ÐУ¬ÇÒA£¬B£¬CÈýµã¶¼ÔÚ¾ØÐεÄÄÚ²¿»ò±ß½çÉÏ£¬Ôò³Æ¸Ã¾ØÐÎΪµãA£¬B£¬CµÄÍâÑÓ¾ØÐΣ®µãA£¬B£¬CµÄËùÓÐÍâÑÓ¾ØÐÎÖУ¬Ãæ»ý×îСµÄ¾ØÐγÆÎªµãA£¬B£¬CµÄ×î¼ÑÍâÑÓ¾ØÐΣ®ÀýÈ磬ͼ1ÖеľØÐÎA1B1C1D1£¬A2B2C2D2£¬A3B3CD3¶¼ÊǵãA£¬B£¬CµÄÍâÑÓ¾ØÐΣ¬¾ØÐÎA3B3CD3ÊǵãA£¬B£¬CµÄ×î¼ÑÍâÑÓ¾ØÐΣ®
£¨1£©Èçͼ1£¬ÒÑÖªA£¨-2£¬0£©£¬B£¨4£¬3£©£¬C£¨0£¬t£©£®
¢ÙÈôt=2£¬ÔòµãA£¬B£¬CµÄ×î¼ÑÍâÑÓ¾ØÐεÄÃæ»ýΪ18£»
¢ÚÈôµãA£¬B£¬CµÄ×î¼ÑÍâÑÓ¾ØÐεÄÃæ»ýΪ24£¬ÔòtµÄֵΪ4»ò-1£»
£¨2£©Èçͼ2£¬ÒÑÖªµãM£¨6£¬0£©£¬N£¨0£¬8£©£®P£¨x£¬y£©ÊÇÅ×ÎïÏßy=-x2+4x+5ÉÏÒ»µã£¬ÇóµãM£¬N£¬PµÄ×î¼ÑÍâÑÓ¾ØÐÎÃæ»ýµÄ×îСֵ£¬ÒÔ¼°´ËʱµãPµÄºá×ø±êxµÄȡֵ·¶Î§£»
£¨3£©Èçͼ3£¬ÒÑÖªµãD£¨1£¬1£©£®E£¨m£¬n£©ÊǺ¯Êýy=$\frac{4}{x}$£¨x£¾0£©µÄͼÏóÉÏÒ»µã£¬¾ØÐÎOFEGÊǵãO£¬D£¬EµÄÒ»¸öÃæ»ý×îСµÄ×î¼ÑÍâÑÓ¾ØÐΣ¬¡ÑHÊǾØÐÎOFEGµÄÍâ½ÓÔ²£¬ÇëÖ±½Óд³ö¡ÑHµÄ°ë¾¶rµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©¢ÙÀûÓÃ×î¼ÑÍâÑÓ¾ØÐε͍ÒåÇó½â¼´¿É£¬¢ÚÀûÓÃ×î¼ÑÍâÑÓ¾ØÐε͍ÒåÇó½â¼´¿É£»
£¨2£©ÏÈÇó³öM£¬N£¬PµÄ×î¼ÑÍâÑÓ¾ØÐΣ¬ÇÒÃæ»ý×îС£¬ÀûÓÃÅ×ÎïÏßÇó³öÓëyÖá¼°¾ØÐεĽ»µã¼´¿ÉÇó³öµãM£¬N£¬PµÄ×î¼ÑÍâÑÓ¾ØÐÎÃæ»ýµÄ×îСֵʱµãPµÄºá×ø±êxµÄȡֵ·¶Î§£»
£¨3£©Çó³öODËùÔÚµÄÖ±Ïß½»Ë«ÇúÏßÓÚµãE£¬¾ØÐÎOFEGÊǵãO£¬D£¬EµÄÒ»¸öÃæ»ý×îСµÄ×î¼ÑÍâÑÓ¾ØÐÎʱ¡ÑHµÄ°ë¾¶¼°µ±µãEµÄ×Ý×ø±êΪ1ʱ¾ØÐÎOFEGÊǵãO£¬D£¬EµÄÒ»¸öÃæ»ý×îСµÄ×î¼ÑÍâÑÓ¾ØÐÎʱ¡ÑHµÄ°ë¾¶¼´¿É£®

½â´ð ½â£º£¨1£©¢ÙÈçͼ1£¬

¡ßA£¨-2£¬0£©£¬B£¨4£¬3£©£¬C£¨0£¬2£©£®
¡àµãA£¬B£¬CµÄ×î¼ÑÍâÑÓ¾ØÐεÄÃæ»ýΪ[4-£¨-2£©]¡Á3=18£®
¹Ê´ð°¸Îª£º18£®
¢ÚÈçͼ2£¬

¡ßµãA£¬B£¬CµÄ×î¼ÑÍâÑÓ¾ØÐεÄÃæ»ýΪ24£¬
¡àA£¨-2£¬0£©£¬B£¨4£¬3£©£¬C£¨0£¬4£©»òA£¨-2£¬0£©£¬B£¨4£¬3£©£¬C£¨0£¬-1£©£®
¡àt=4»òt=-1£»        
¹Ê´ð°¸Îª£º4»ò-1£®
£¨2£©Èçͼ3£¬¹ýMµã×÷xÖáµÄ´¹ÏßÓë¹ýNµã´¹Ö±ÓÚyÖáµÄÖ±Ïß½»ÓÚµãQ£¬Ôòµ±µãPλÓÚ¾ØÐÎOMQNÄÚ²¿»ò±ß½çʱ£¬¾ØÐÎOMQNÊǵãM£¬N£¬PµÄ×î¼ÑÍâÑÓ¾ØÐΣ¬ÇÒÃæ»ý×îС£®
¡ßS¾ØÐÎOMQN=OM•ON=6¡Á8=48£¬
¡àµãM£¬N£¬PµÄ×î¼ÑÍâÑÓ¾ØÐÎÃæ»ýµÄ×îСֵΪ48£®
Å×ÎïÏßy=-x2+4x+5ÓëyÖá½»ÓÚµãT£¨0£¬5£©£®
Áîy=0£¬ÓÐ-x2+4x+5=0£¬
½âµÃ  x=-1£¨Éᣩ£¬»òx=5£®
Áîy=8£¬ÓÐ=-x2+4x+5=8£¬
½âµÃ  x=1£¬»òx=3£®
¡à0¡Üx¡Ü1£¬»ò3¡Üx¡Ü5£® 
£¨3£©Èçͼ4£¬ODËùÔÚµÄÖ±Ïß½»Ë«ÇúÏßÓÚµãE£¬¾ØÐÎOFEGÊǵãO£¬D£¬EµÄÒ»¸öÃæ»ý×îСµÄ×î¼ÑÍâÑÓ¾ØÐΣ¬

¡ßµãD£¨1£¬1£©£¬
¡àODËùÔÚµÄÖ±Ïß±í´ïʽΪy=x£¬
¡àµãEµÄ×ø±êΪ£¨2£¬2£©
¡àOE=2$\sqrt{2}$£¬
¡à¡ÑHµÄ°ë¾¶r=$\sqrt{2}$£¬
Èçͼ5£¬

¡ßµ±µãEµÄ×Ý×ø±êΪ1ʱ£¬1=$\frac{x}{4}$£¬½âµÃx=4£¬
¡àOE=$\sqrt{{1}^{2}+{4}^{2}}$=$\sqrt{17}$£¬
¡à¡ÑHµÄ°ë¾¶r=$\frac{\sqrt{17}}{2}$£¬
¡à$\sqrt{2}¡Ür¡Ü\frac{{\sqrt{17}}}{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌâ£¬Éæ¼°µãµÄ×ø±ê£¬Õý·½Ðμ°³¤·½ÐεÄÃæ»ý¼°Ë«ÇúÏßµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇ×î¼ÑÍâÑÓ¾ØÐε͍Ò壮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø