题目内容
4.分析 设出当x>1时,车费y关于路程x的函数解析式为y=kx+b,结合函数图象中点的坐标利用待定系数法可求出函数的解析式,令y=19,算出x的值,此题得以解决.
解答 解:设当x>1时,车费y关于路程x的函数解析式为y=kx+b,
结合图象中点的坐标可知:$\left\{\begin{array}{l}{10=6k+b}\\{13.6=8k+b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=1.8}\\{b=-0.8}\end{array}\right.$.
故当x>1时,钱数y关于路程x的函数解析式为y=1.8x-0.8.
令y=19,则有19=1.8x-0.8,
解得:x=11.
故答案为:11.
点评 本题考查了待定系数法求函数解析式与解一元一次方程,解题的关键是设出函数的解析式结合函数图象中点的坐标求出函数解析式.本题属于基础题,难度不大,解决该类型题目时,设出函数解析式,结合图象中点的坐标利用待定系数法求出函数解析式即可.
练习册系列答案
相关题目
14.$\frac{1}{27}$的立方根是( )
| A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $±\frac{1}{3}$ | D. | 3 |