题目内容
9.已知实数a,b互为倒数,其中a=2+$\sqrt{5}$,则$\sqrt{a-b+5}$的值为3.分析 由实数a,b互为倒数,其中a=2+$\sqrt{5}$,可得b,再将a、b代入即可.
解答 解:∵实数a,b互为倒数,a=2+$\sqrt{5}$,
∴b=$\frac{1}{2+\sqrt{5}}$=$\sqrt{5}$-2,
∴$\sqrt{a-b+5}$=$\sqrt{9}$=3,
故答案为:3.
点评 本题主要考查了分母有理化,利用分母有理化求出b是解答此题的关键.
练习册系列答案
相关题目
4.下列命题中是真命题的有( )
①对顶角相等;
②两直线平行,内错角相等;
③两个锐角对应相等的两直角三角形全等.
①对顶角相等;
②两直线平行,内错角相等;
③两个锐角对应相等的两直角三角形全等.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 0个 |
14.下列方程中解为x=2的方程是( )
| A. | 1-$\frac{x}{6}=\frac{1-x}{2}$ | B. | 2(x-3)=-x+1 | C. | 2x+1=3x-1 | D. | 3(1-2x)-2(x+2)=0 |
1.
已知∠BAC在正方形网格线中的位置如图所示,则tanA的值为( )
| A. | $\frac{2\sqrt{13}}{13}$ | B. | $\frac{3\sqrt{13}}{13}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |