题目内容
6.| A. | 105° | B. | 112.5° | C. | 120° | D. | 135° |
分析 连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=$\sqrt{2}$PB=2$\sqrt{2}$,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.
解答
解:连结PP′,如图,
∵四边形ABCD为正方形,
∴∠ABC=90°,BA=BC,
∴△ABP绕点B顺时针旋转90°得到△CBP′,
∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,
∴△PBP′为等腰直角三角形,
∴∠BPP′=45°,PP′=$\sqrt{2}$PB=2$\sqrt{2}$,
在△APP′中,∵PA=1,PP′=2$\sqrt{2}$,AP′=3,
∴PA2+PP′2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,
∴∠BP′C=135°.
故选D.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.
练习册系列答案
相关题目
14.
如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 4$\sqrt{2}$ |
1.
如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论错误的是( )
| A. | △ABG≌△AFG | B. | BG=CG | C. | S△EGC=S△AFE | D. | ∠AGB+∠AED=145° |
11.
如图,平行四边形ABCD和矩形ACEF的位置如图所示,点D在EF上,则平行四边形ABCD和矩形ACEF的面积S1、S2的大小关系是( )
| A. | S1>S2 | B. | S1=S2 | C. | S1<S2 | D. | 3S1=2S2 |