题目内容

已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.
求证:AB=AF.
考点:矩形的性质,全等三角形的判定与性质
专题:证明题
分析:根据已知及矩形的性质利用AAS判定△ADF≌△DEC,从而得到AF=DC,因为DC=AB,所以AF=AB.
解答:证明:∵AF⊥DE.
∴∠AFE=90°.
∵在矩形ABCD中,AD∥BC,∠C=90°.
∴∠ADF=∠DEC.
∴∠AFE=∠C=90°.
∵AD=DE.
∴△ADF≌△DEC.
∴AF=DC.
∵DC=AB.
∴AF=AB.
点评:此题考查学生对矩形的性质及全等三角形的判定方法的理解及运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网