题目内容

18.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=$\sqrt{7}$或1.

分析 根据旋转性质可得∠APB=∠CP'B=135°、∠ABP=∠CBP'、BP=BP'、AP=CP',由∠ABP+∠PBC=90°知△BPP'是等腰直角三角形,进而根据∠CP'B=135°可得∠PP'C=90°,设BP=BP'=a、AP=CP'=b,在RT△PP'C中根据勾股定理可得CP'=$\sqrt{9-2{a}^{2}}$,最后由BP的长a为整数可得AP.

解答 解:∵△BP'C是由△BPA旋转得到,
∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',
∵∠ABP+∠PBC=90°,
∴∠CBP'+∠PBC=90°,即∠PBP'=90°,
∴△BPP'是等腰直角三角形,
∴∠BP'P=45°,
∵∠APB=∠CP'B=135°,
∴∠PP'C=90°,
设BP=BP'=a,AP=CP'=b,
则PP'=$\sqrt{2}$a,
在RT△PP'C中,∵PP'2+P'C2=PC2,且PC=3,
∴CP'=$\sqrt{P{C}^{2}-PP{'}^{2}}$=$\sqrt{9-2{a}^{2}}$,
∵BP的长a为整数,
∴满足上式的a为1或2,
当a=1时,AP=CP'=$\sqrt{7}$,
当a=2时,AP=CP'=1,
故答案为:$\sqrt{7}$或1.

点评 本题主要考查旋转的性质、等腰直角三角形、勾股定理等知识点,熟练运用这些性质、定理得出a、b间的关系式是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网