题目内容

3.如图,在正方形ABCD的外侧,作等边三角形ADE,连接CE,与对角线BD交于F,则∠BFC为(  )
A.75°B.70°C.65°D.60°

分析 由于四边形ABCD是正方形,△ADE是正三角形,由此可以得到CD=DE,接着利用正方形和正三角形的内角的性质即可求解.

解答 解:∵四边形ABCD是正方形,
∴∠ADC=90°,AD=DC,
又∵△ADE是正三角形,
∴CD=DE,∠ADE=60°,
∴△CDE是等腰三角形,∠CDE=90°+60°=150°,
∴∠ECD=∠DEC=15°,
∵∠BDC=45°,
∴∠CFD=180°-15°-45°=120°,
∴∠BFC=60°,
故选D

点评 此题主要考查了正方形和等边三角形的性质,同时也利用了三角形的内角和,解题首先利用正方形和等边三角形的性质证明等腰三角形,然后利用等腰三角形的性质即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网