题目内容

如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是( )

A. m+n<0 B. m<n C. |m||n|>0 D. 2+m<2+n

D 【解析】试题分析:根据M、N两点在数轴上的位置判断出其取值范围,再对各选项进行逐一作出判断: 由M、N两点在数轴上的位置可知:-1<M<0,N>2, ∵-1<M<0,N>2,∴M+N>0,故A错误. ∵M<N,∴-M>-N,故B错误. ∵-1<M<0,N>2,∴|m|-|n|<0,故C错误. ∵M<N,∴2+m<2+n,故D正确. 故选D.
练习册系列答案
相关题目

地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,由此预测,2013年底剩下江豚的数量可能为( )头.

A.970 B.860 C.750 D.720

B 【解析】 试题分析:根据2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,得出2013年底剩下江豚的数量的取值范围。设2013年底剩下江豚的数量是x,则列出不等式组解得850﹤x﹤870,符合题意的只有860. 考点一元一次不等式组的应用:

四边形ABCD中,已知AB=CD,若再增加一个_________条件(只填写一个)可得四边形ABCD是平行四边形.

AB//CD等 【解析】【解析】 ∵在四边形ABCD中,AB=CD,∴可添加的条件是:AB∥CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形). 故答案为:AB//CD.

不等式的解集在数轴上表示如图所示,则该不等式可能是___________________.

不唯一,如x-1≤0 【解析】由图形可知,不等式的解集为x≤1.只要所写的不等式的解集为x≤1,即可,答案不唯一.

若a是不等式2x﹣1>5的解,b不是不等式2x﹣1>5的解,则下列结论正确的是(  )

A. a>b B. a≥b C. a<b D. a≤b

A 【解析】解2x﹣1>5得x>3,. a是不等式2x﹣1>5的解则a>3,b不是不等式2x﹣1>5的解,则b≤3. 故a>b. 故选A.

如图所示,已知六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F=120°.试说明AB+BC=EF+ED.

见解析 【解析】分析:分别延长AB、DC相交于点M,延长AF、DE相交于点N,通过作辅助线我们可以得到∠MBC=∠MCB=60°,再结合三角形内角和定理即可判断△BMC是等边三角形,同理还可以得出△EFN是等边三角形;由“两组对角分别相等的四边形是平行四边形”可知四边形AMDN是平行四边形,从而可以得到AM=DN即可得出结果. 本题解析:分别延长AB、DC相交于点M,延长AF、DE相交...

如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据: ≈1.41, ≈1.73)

2.9 【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.

已知,求A、B的值.

A=1,B=1. 【解析】试题分析:已知等式右边两项通分并利用同分母分式的加法法则计算,利用分式相等的条件即可求出A与B. 试题解析: 【解析】 ===, ∴, 解得: .

已知:如图,在?ABCD中,∠ADC,∠DAB的平分线DF,AE分别与线段BC相交于点F,E,DF与AE相交于点G.

(1)求证:AE⊥DF;

(2)若AD=10,AB=6,AE=4,求DF的长.

(1)证明见解析;(2). 【解析】试题分析:(1)根据平行四边形的性质和平行线的性质推出∠ADC+∠DAB=180°,根据角平分线得到∠ADF+∠DAE=(∠ADC+∠DAB)=90°,即可求出结论; (2)过点D作DH∥AE,交BC的延长线于点H,得到平行四边形AEHD,求出DH=AE=4,EH=AD=10,根据平行四边形的性质和平行线的性质推出DC=FC,AB=EB,求出BF、F...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网