题目内容
9.分析 先根据题意得出PB的长,再由山坡的坡度为1:$\sqrt{3}$可得出∠ABC的度数,进而可得出∴△PAB是等腰直角三角形,据此可得出结论.
解答 解:∵在点P处测得B处的俯角为60°,测得A处的俯角为15°,
∴∠PBH=60°,∠APB=45°.
在Rt△PBH中,
∵PH=45米,
∴PB=PH÷sin60°=30$\sqrt{3}$.
∵山坡的坡度为1:$\sqrt{3}$,即tan∠ABC=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴∠ABC=30°,
∴∠PBA=90°,
∴△PAB是等腰直角三角形,
∴AB=PB=30$\sqrt{3}$≈52米.
答:A、B两点间的距离为52米.
点评 本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.
练习册系列答案
相关题目
19.中国最大的水果公司“佳沃鑫荣懋”旗下子公司“欢乐果园”购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为P=$\left\{\begin{array}{l}{\frac{1}{4}t+30(1≤t≤24,t为整数)}\\{-\frac{1}{2}t+48(25≤t≤48,t为整数)}\end{array}\right.$,且其日销售量y(kg)与时间t(天)的关系如表:
(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?
(2)问哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售前24天中,子公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.
| 时间t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
| 日销售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(2)问哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售前24天中,子公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.