ÌâÄ¿ÄÚÈÝ
20£®£¨1£©Çób£¬mµÄÖµ£»
£¨2£©¾ØÐÎCDEFÔ˶¯tÃëʱ£¬Ö±½Óд³öC¡¢DÁ½µãµÄ×ø±ê£¨Óú¬tµÄ´úÊýʽ±íʾ£©£»
£¨3£©µ±µãBÔÚ¾ØÐÎCDEFµÄÒ»±ßÉÏʱ£¬ÇótµÄÖµ£®
·ÖÎö £¨1£©°ÑB£¨2£¬m£©´úÈëy=$\frac{3}{2}x$¼´¿ÉÇóµÃmµÄÖµ£¬È»ºó´úÈëy=-$\frac{1}{2}$x+b¼´¿ÉÇóµÃbµÄÖµ£»
£¨2£©¸ù¾ÝCµÄ×ø±êºÍCDµÄ³¤£¬ÇóµÃDµÄ×ø±ê£¬ÔòÔ˶¯Ê±¼äλt£¬ÔòÏòÓÒÔ˶¯¾àÀëÊÇ2t£¬ÔòC¡¢DÁ½µãµÄ×ø±ê¼´¿ÉÇó½â£»
£¨3£©µãBÔÚ¾ØÐÎCDEFµÄÒ»±ßÉÏ£¬Ôò¿ÉÄÜÔÚCFÉÏ»òDEÉÏ£¬ÔÚCFÉÏʱ£¬BµÄºá×ø±êµÈÓÚCµÄºá×ø±ê£¬¼´¿ÉÁз½³ÌÇó½â£¬Í¬Àíµ±BÔÚDEÉÏʱ£¬BµÄºá×ø±êµÈÓÚDµÄºá×ø±ê£¬¼´¿ÉÇóµÃt£®
½â´ð ½â£º£¨1£©°ÑB£¨2£¬m£©´úÈëy=$\frac{3}{2}x$µÃ£ºm=$\frac{3}{2}¡Á2$=3£¬
ÔòBµÄ×ø±êÊÇ£¨2£¬3£©£¬´úÈëy=-$\frac{1}{2}$x+bµÃ£º-1+b=3£¬½âµÃ£ºb=4£»
£¨2£©¡ßDC=2£¬µãCµÄ×ø±êΪ£¨-2£¬0£©£¬ÔòDµÄ×ø±êÊÇ£¨-4£¬0£©£®
¡à¾ØÐÎCDEFÔ˶¯tÃëʱ£¬CµÄ×ø±êÊÇ£¨-2+2t£¬0£©¡¢DµãµÄ×ø±ê£¨-4+2t£¬0£©£»
£¨3£©µ±BÔÚCFÉÏʱ£¬-2+2t=2£¬½âµÃt=2£»
µ±BÔÚDEÉÏʱ£¬-4+2t=2£¬½âµÃt=3£®
ÔòtµÄÖµÊÇ2»ò3£®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýÓëͼÐÎµÄÆ½ÒÆ£¬ÕýÈ·Àí½âBÔÚCFÉÏʱ£¬BµÄºá×ø±êµÈÓÚCµÄºá×ø±ê£¬×ª»¯Îª·½³ÌÇó½âÊǹؼü£®
| A£® | k£¾0£¬b£¾1 | B£® | k£¾0£¬b¡Ü1 | C£® | k£¼0£¬b£¾1 | D£® | k£¼0£¬b¡Ý1 |