题目内容

15.已知,如图,B、C、D三点共线,AB⊥BD,ED⊥CD,C是BD上的一点,且AB=CD,∠1=∠2,请判断△ACE的形状并说明理由.

分析 由∠1=∠2可得AC=CE,再加上AB=CD,AB⊥BD,ED⊥CD,可直接证明三角形ABC与三角形CDE全等,从而易得三角形ACE是等腰直角三角形.

解答 解:∵∠1=∠2,
∴AC=CE,
∵AB⊥BD,ED⊥CD,
在△ABC与△CDE中,
$\left\{\begin{array}{l}{AC=CE}\\{AB=CD}\end{array}\right.$,
∴△ABC≌△CDE,
∴∠ACB=∠CED,
∵∠CED+∠ECD=90°,
∴∠ACD+∠ECD=90°,
∴∠ACE=90°,
∴△ACE是等腰直角三角形.

点评 本题主要考查了“HL”定理的应用,全等三角形的性质,等腰直角三角形的判定与性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网